FORMULATION OF A PROBLEM CLASS CONCERNING THE
MASS TRANSFER IN GRANULAR BEDS WITH PHASE
TRANSFORMATIONS AND CHEMICAL CONVERSIONS

Yu. A. Berman UDC 532,72

A system of differential equations is derived describing the mass transfer in a granular
monodispersion bed, whereupon the basis characteristics of the mass transfer processes in
such a bed are defined.

In the general theory of heat and mass transfer not sufficient attention has been paid to the kinetics of
processes involving phase transformations and chemical conversions in a dense granular filtration bed f11.

As a consequence of this deficiency, the system of mass-transfer equations has not yet been properly
generalized and individual problems as well as their solutions refer only to special cases [2-4].

At the same time, the similarity of transfer phenomena makes it possible to treat mass transfer
processes in the same way.

In this article the author will consider only those processes involved in a heterogeneous interaction
between phases where next to the reaction rate one may, with sufficient accuracy, take inte account only
the heat transfer rate or the mass transfer rate and disregard the other of the two, i.e., processes which
occur either in the kinetic-thermal or in the kinetic diffusion mode.

We note that a gas—condensate system will be at equilibrium when the transfer potentials in both
phases (the first and the second) are equal, i.e., when '
I, = IL,. (1)
It can be proved on the basis of nonequilibrium thermodynamics [5] that in a system only slightly de~
viating from equilibrium the reaction rate is proportionaltothis deviation. Anexperimental study of several
mass transfer processes (evaporation, reduction— oxidation reactions, thermal decomposition, etc.) indicates
that this relation remains valid also for a system far removed from equilibrium when first-order reactions occur.

We can, therefore, write for the rates of first-order reactions:
Uoe = kS (I, —TTe), (2)
where the proportionality factork signifies the reaction conductance [5].

Since thermodynamic equilibrium is a special case of the steady state reached when the boundary
conditions are compatible with the equilibrium conditions [5], hence the quantity Il is phenomenologically
equivalent tothe equilibrium potential of the gaseous phase (e. g. , the equilibrium concentration of the reacting
component inthe gas) orto the potential at the reaction surface of the condensate phase. Important is onlythat
the potential difference in Eq, (2) characterizes the deviation of the gas — condensate system from equilibrium
and determines the reaction-motive force. Inview ofthis,the magnitude of Ilo may be treated empiricallyand
defined as the magnitude at which the reaction rate is zero or falls below some prescribed low level.

According to its definition, the magnitude of potential Ile is constant during a reaction process under
prescribed conditions.

An analog of Tl is, for example, the temperature of the evaporation surface in drying problems,
where the psychrometric temperature difference may be interpreted as the evaporation motive force [6],
inasmuch as, according to the Lykov method [6] and the Filonenko method [7], the drying rate during the
slowdown period can be expressed in terms of the initial drying rate,
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When a heterogeneous mass transfer is isothermal, the concentration difference (¢ — ce) may be in-
terpreted as the motive force in a first-order reversible reaction, while the magnitude of IIg corresponds
to the equilibrium concentration of the reacting component in the gaseous phase [4],

In highly endothermal reactions such as thermal decomposition, when all the incoming heat is ex-
pended esgentially on the reaction and the temperature of the solid phase remains almost unchanged, the
difference between the ambient temperature and the temperature of the reacting solid substance may be
interpreted as the motive force, so that the magnitude of Il, will determine the temperature at the time
when the rate of the endothermal reaction begins to rise under prescribed conditions [8].

Thus, one can always define the transfer potential and the motive force in a specific mass transfer
process on the basis of the physical mechanism of the attendant phenomena,

The stage of a physicochemical transformation in the particle of a solid phase can generally be mea~
sured in terms of the conversion coefficient
¥4
P=1—=. (3)
z0
For the solution of engineering problems it is usually most important to determine the mean (over
the volume of a particle) conversion coefficient of the reacting condensate component:

1 .
v=r | V. (4

)

By analogy to relation (2), the reaction rate expressed in terms of the mean {over the volume of a
particle) conversion coefficient, we will multiply the total reaction conductance by the reaction motive
force and rewrite the equation for the conversion rate as

d
VBzo SE — g (I, —1IL). )

The right-hand side of Eq. (5) represents the flow of mass or heat from the gaseous phase into the volume
of golid particles.

Since the convective transfer from the gaseous phase to the geometrical surface of particles usually
follows Newton's law, hence the total conductance in Eq. (5) is
g =0 &(R), where 2(R) = &:H—s (6)
I —1II,
When a reaction occurs only at the geometrical surface of particles and is limited by the external
transfer conductance, then lIg = Il and

g =ab(), {7
with function 6(y) representing the variation of the reaction surface area, in fractions of the geometrical

surface or in terms of the potential difference during the reaction,

We note that, according to (7), the formulas by Lykov [6] and Filonenko [7] for approximating the
curves of the drying rate versus time during the slowdown period in the process may be treated as approx-
imations of function ().

It is characteristic of porous particles that reactions occur throughout their volume with a variable
specific reaction surface [8-10], In this case the total conductance consists of the transfer conductance
from the gaseous phase to the surface of particles and the conductance inside the volume of particles, with
the reaction taken into account.

Assuming the reaction to be a quasisteady process, which usually does not result in a large error
[8-11], we determine the total conductance by combining the external and the volume component according
to the general rule:

= )
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According to (8)

Bext™ g l €01~ and, conversely, £Lyo1= g‘] Coxt I.m‘. (9)

We now introduce into our analysis the dimensionless variables

__:_aﬂF(HO—_HD)T : g*::g_&' (10)
VPz,R o
As a consequence of Eq, (5) and conditions (9), we have the following expressions for the dimension-
less analogs of external and volume conductance

® . * . 01])
Gext=Bl, &vo1= (_a_TI—)IIsFH.' (11)
; 3
It follows from the second expression in (11) that, at constant transfer coeificients and geometrical
particle parameters, the dimensionless analog of volume conductance is a continuous (or a piecewise con-
tinuous) function of the conversion coefficient,

The second expression in (11) can serve as the basis for experimentally determining the trend of
g*vol(zp) and also, if possible in specific cases, as the basis for using the canonical equations of kinetics.

The functional relation g;ol(d’) can be determined, most generally, from the solution to the system
of equations of quasisteady potential conduction through the volume of particles. Asg a consequence of sim-
ilarity between heat and mass transfer phenomena, the equations of potential conduction and a reaction can
be written out in the same general form,

For spherical bodies we have

Pxioe, 2 Onloc
R S b1, S () = 0,
P o 30 Toc S () (12)
0
ﬂc___ 1/ 3b2“’10c S ) (13)
with the boundary conditions

O1oc|

brocl=0 =10, 6—12c‘ =0, e le=1=1. (14)
¢ =0 :

Here

__Hloc_ne; b2 = kS, R q):L’

HKloc ™ Hs’"—ne ay R (15)

and function S(y) represents the variation of specific surface during the reaction,

We note that the mass transfer coefficient b and the function S(g) have been defined in accordance
with the physical mechanism of the reaction in a single volume element of particles.

A comparison of the quasisteady-state equation (12) and the complete equation in {11] yields the fol~
lowing condition of quasisteadiness
MA,—Te
Bz,
with M denoting the transfer inertia equal to the gas density during mass transfer or to the volume heat
capacity during heat transfer,

(16)

For a reaction in the kinetic-diffusion mode, condition (16) becomes
fol6o ) 1. (17
P00
Since pg « Pt hence this condifion is usually satisfied,
For a reaction in the kinetic-thermal mode, condition (16) becomes

1 (B —1d) oy (18)

Q%
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Fig.1. Coefficient k(b) in formula (23) as a function of the mass transfer coefficient
b: kinetic mode of volume reaction (I), kinetic-diffusion or kinetic-thermal mode of
reaction (I), diffusion or thermal mode of reaction (III).

Fig. 2. Curves of the conversion coefficient of material in porous particles during
the various modes of volume reaction: b =2 (1), 4 (2), 5 (3), 8 (4), 12 (5), 16 (6),
20 (7), 100 (8). Exact solution (solid lines), according to approximate formula (24)
(dashed lines),

and is satisfied when the reaction ig highly endothermal, with condition (16) expressed more precisely in
terms of

Q> =Q, (1+Rb), (19)
instead of Q and the Rebinder number being defined by the ratio
3 ot
Rb — XrMpM L
szo alp (20)

The transfer phenomena play no role in a kinetic reaction and the trend of gfq1(¥) at njoe = 1 is de-
termined by Eq. (13). Conversely, when mass or heat transfer rather than kinetics are limiting a pro-
perly chemical reaction, then

(L=~
I— (1=
A reaction in the intermediate mode is more difficult to analyze, because the system of equations

(12)-(13) is nonlinear and its solution presents a special problem, Function S(}) can often be approxi-
mated [3, 6, 8, 10] by

Gvol = (21)

S =1—1. (22)
With S(p) expressed like this, Eqgs. (12)-(13) have been solved numerically in [10],

Following the suggestions in [10] and an evaluation of the numerical solution to Eqgs. (12)-(13), it has
been possible to derive an approximate formula
10

8vol = 3 (I—v), (23)

for the entire range of reaction modes with S() defined according to (22),

Coefficient k(b) is shown in Fig.1 as a function of the mass transfer coefficient b, while the ()
curves in Fig. 2 represent respectively the exact solution and the approximate formula
k(b
kO) )

(24)

P =1—exp (— 3
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derived from (23} and by integrating the second expression in (11), We note that formula (24) can be used
for determining, from tests, the reaction constants in the expression for the mass transfer coefficient b,

Thus, in the most general case, relation (8) yields the dimensionless analbg of the total conductance
as a function of the conversion coefficient:

gr=F(¢).

Function F () as well as the transfer potential must be considered the fundamental characteristics of
mass transfer processes and, as a most general rule, expressions for the dimensionless analog of the
total conductance F() will vary from case to case,

The preceding discussion dealt with basic problems concerning the reaction kinetics at a constant
transfer potential in the gaseous phase. When the mass transfer processes in a bed of particles are quasi-
steady, then Iy = var, but the balance equation is also valid then,

ow e gy ¥
0x ot
being its quasisteady approximation with assumed zero losses and zero lengthwise transfer by either dif-
fusion or conduction,

We have ¢ =x g/pq if the transfer potential is represented by temperature, or ¢ = g if it is repre-
sented by concentration,

In dimensionless variables

we—He o ap(l—mx
R owR:

The system of equations describing the mass transfer in a bed can, according to (5) and (26), be
written as

M ox ,
—2 = ‘}{,F , T = 'KF .
o W) 3 ()

We note that using Eq. (28) implies a negligible, as compared to the total reaction time, delay (Ar
=x(1 — m)/w in the beginning of a reaction at various bed levels owing to the finite velocity of the stream
through the porous volume (this assumption of a negligible time delay is always valid in practice), and it
implies the validity of the second quasisteadiness condition

™M 2
R = R
an U,

The latter inequality means that any concentration or temperature change in a gas stream within a
distance of the order of a particle dimension may be disregarded. The quantity u,, will be determined after
system (28) has been solved.

For a reaction in a moving bed (parallel flow or counterflow) there appears no difficulty in solving
system (28), by virtue of the steady potential field of transfer in the direction of the bed flow.

The general solution to the quasilinear system (28) for a stationary bed with an arbitrary form of
function F($) presents a special problem.,

The author thanks Professor M, A, Gurevich for discussing a number of questions here, for supplying
tables with the aid of which the results of the numerical integration of Eqs, (12)-(13) with the boundary con~
dition (14) and the approximation (22) could be analyzed.

NOTATION
is the transfer potential;
is the reaction rate;
is the reaction constant;
is the gpecific reaction surface in a particle volume;
is the material conversion coefficient;
is the volume concentration of the reacting component in the condensate phase of particles;
is the volume of a particle;

<§emw<:1
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is the time;

is the stoichiometric mass or energy flow rate necessary to convert a unit mass of the condensate
phase;

is the geometrical surface of a particle;

is the total conductance;

is the external-transfer conductance;

ig the volume conductance in a particle, with the chemical reaction taken into account;
is the coefficient of external heat or mass transfer;

is the potential conductivity (per particle volume);

is the radius of spherical particles;

is the radial coordinate;

is the concentration of the reacting component in the gaseous phase;

is the density;

is the initial weight content of the reacting component in the condensate phase, per unit mass of ma-~
terial in the particles;

is the heat capacity (per weight);

is the specific heat of the endothermal reaction;

is the temperature of the material;

is the distance from the bed surface;

ig the velocity of the gas stream;

is the number of particles per unit bed volume;

is the bed porosity;

is the velocity of the stream front at a fixed potential.

Subsecripts

ZQukoo

D =

o g

O W0,
. « .

bt

denotes local;

denotes equilibrium;

denotes initial at entrance to the bed;
denotes distance from the bed surface;
denotes bed surface;

denotes gas;

denotes bed material,
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